
1

Solutions to the exercises in the book

This document contains solutions to the exercises in the book. The appendix at the

end contains the Plantuml-code used for the figures in this document.

2.1 input steps: 2, 3, unnamed, 7.1

 internal steps: 4.1, 7.2, 8.1

 external steps: 1, 6.1, 6.2, 10

 output steps: 4.2, 5, 8.2, 8.3, 9

2.2 1 * 2 * 2 * 3 * 1 * 3 = 36.

 The last step, for instance, has 3 possibilities:

 E1 followed by E2, E2 followed by E1, and ‘nothing’

2.3 If H3 is ‘dominant over’ H1 then replace the third line by

if H3 then B3 else

if H1 then B2 else B end

end;

The underlying case-analysis we used is:

H1 H3 Result H1 H3 Result

– – B ++ + B2

+ – B2 + ++ B3

– + B3

+ + ?

+: holds +: holds

–: does not hold ++: dominant over the other

2.4 Depends on your native language, of course. For Dutch it could be something

like below (although other Dutch ‘keywords’ might have been chosen):

1. F(actor1  System: γ) ≝ F(actor1) vraagt het Systeem om F(γ)

2. F(actor1  actor1: γ) ≝ F(actor1) doet F(γ)

3. F(actor1  actor2: γ) ≝ F(actor1) zendt F(γ) naar F(actor2)

4. F(e1; e2) ≝ F(e1). <newline> F(e2)

5. F(e1, e2) ≝ F(e1) en <newline> F(e2)

6. F(begin e end) ≝ begin F(e) end

7. F(if [a:] c then e1 [else e2] end) ≝ als [F(a):] F(c)

 dan F(e1) [anders F(e2)] end

8. F(while [a:] c do e end) ≝ zolang [F(a):] F(c) doe F(e) end

9. F(repeat e until [a:] c) ≝ herhaal: F(e) totdat [F(a):] F(c)

10. F(for each m do e end) ≝ voor elk(e) F(m) doe F(e) end

11. F(maybe e end) ≝ misschien F(e) end

12. F(either e1 or … or en end) ≝ hetzij F(e1) hetzij … hetzij F(en) end

13. F(perform n) ≝ volbreng F(n)

14. F(define n as e end) ≝ F(n) betekent: F(e) end

In order to check your own translation rules, you may apply them to some of

the textual SSDs in the book, for instance. Zelf ook doen!

2

4.1 (a) The questionnaire has the following likely answers:

1a. A member borrows 0 or more books

1b. For each book, 0 or more members borrow that book

2a. An author wrote 0 or more books

2b. For each book, 0 1 or more authors wrote that book

3a. A publisher published 0 or more books

3b. For each book, exactly 1 publisher published that book

4a. A book is in exactly 1/at most 1/0 or more branch(es)

4b. For each branch, 0 or more books are in that branch

Case 4a is problematic:

o A physical book is in at most 1 branch (lent out or not)

o A book ‘title’ (librarian’s phrase) is in 0 or more branches

We will come back to this kind of problem in Section 4.3.3

(Individual items versus ‘catalogue’ items).

(b) The corresponding multiplicities as far as we could determine them:

4.2 Indeed, there are different notions of ‘exam’. Something like ‘Exam drafted’,

of which there are 2, and ‘Exam made’ of which there are 150 in total. As

opposed to the concept ‘Exam drafted’, the concept ‘Exam made’ probably

has a property ‘Student’ referring to the student who produced the exam work.

In terms of this Section 4.3.3, ‘Exam drafted’ can be considered as a

‘Catalogue’ Item and ‘Exam made’ as an Individual Item.

3

4.3 (a) According to Table 4.1, the domain model expresses the following:

Association with A = Client, B = Item, xs = buys, m = ‘*’, and n = ‘*’:

1. A Client buys 0 or more Items and

2. an Item is bought by 0 or more Clients

Association with A = Cashier, B = Item, xs = scans, m = ‘1’, and n = ‘*’:

3. A Cashier scans 0 or more Items and

4. an Item is scanned by exactly 1 Cashier

(b) Statements 2 and 4 seem to conflict with each other:

o Since an Item can be bought by more than one Client (see 2), Item seems

to be meant as a ‘Catalogue’ item (unless they mean that in those cases

an individual item is bought as a common property of those clients)

o Since an Item is scanned by exactly 1 Cashier (see 4), Item seems to be

meant as an individual item (unless they mean that each ‘Catalogue’

item has its own ‘private’ Cashier)

(c) The word ‘Item’ is a homonym here, sometimes used as an Individual Item

and sometimes as a Catalogue Item.

(d) So, you must distinguish between Individual Item and Catalogue Item.

Then the statements were probably meant as follows:

1. A Client buys 0 or more Individual Items and

2. an Catalogue Item is bought by 0 or more Clients.

3. A Cashier scans 0 or more Individual Items and

4. an Individual Item is scanned by exactly 1 Cashier.

This would lead to the following domain model:

The four underlined multiplicities are expressed in the new statements. The

multiplicities with a question mark are not expressed in the new statements.

The red coloured association is superfluous because it follows from the

other associations.

4

5.1 (a) Add the (likely) multiplicities

 (b) Replace the many-to-many associations (if present):

 Well, one many-to-many association must be replaced, leading to:

5

 (c), (d), and (e) combined

(c) Replace all association lines by arrows and extend the concepts with the

references that follow from the associations (if not present yet)

(d) Add a ‘borrowing date’ at the proper place

(e) Add uniqueness constraints for the two concepts with known properties

Meanwhile there is a third concept with some known properties (‘Loan’)

but its uniqueness constraints are unclear yet.

 (f) and (g) combined

(f) Now suppose that a book can have several contributing authors and

adapt the conceptual data model

(g) Transform all reading directions such that they follow the arrow

(where still necessary)

6

5.2 (a) The proposal expresses that:

o An employee can be the coordinator of at most 1 course

The proposal implies that:

o A course can have more than 1 coordinator

o A course can have no coordinator at all

Therefore, the proposal is not correct.

The proposal illustrated by a graph:

(b) The proposal expresses that:

o An employee can be the coordinator of more than 1 course

o A course can have more than 1 coordinator

The proposal also implies that:

o A course can have no coordinator at all

Therefore, the proposal is not correct.

The proposal illustrated by a graph:

(c) The proposal expresses that:

o An employee can be the coordinator of at most 1 course

o A course can have at most 1 coordinator

The proposal implies that:

o A course can have no coordinator at all

Therefore, the proposal is not correct.

The proposal illustrated by a graph:

(d) The proposal expresses that:

o A course can have at most 1 coordinator

The proposal implies that:

7

o A course can have no coordinator at all

Therefore, the proposal is not correct.

The proposal illustrated by a graph:

(e) The correct proposal is

Course

^Coordinator

where Coordinator must refer to Employee.

The proposal expressed in a graph:

(f) Only (e) is correct. The course coordinators are those employees who

are mentioned in Course.

5.3 (a) A Rating refers to a Participation and has a value.

A Participation refers to a Student and refers to a Class.

A Class refers to a Lecturer and refers to a Course.

 (b)

If per Participation only one Rating can be given then the crow’s foot arrow

from Rating to Participation can be replaced by a normal arrow: 

8

5.4 (a)

(b) Then there is only the concept Catalogue Item, no concept Individual Item

anymore. We added the two dots for lay-out reasons only:

5.5 Assumptions made:

o Each node has a unique name

o Between two given nodes there can be several arrows,

but different arrows between those two nodes have different labels.

This results in the following conceptual data model for labelled graphs:

The general Figure 5.2(b) can now be represented as follows:

Node Arrow

Name Node from Node to Label

B A B r1

A A B r2

For Figure 5.2(a) this results in the following contents:

Node Arrow

Name Node from Node to Label

Node Arrow Node from

Arrow Arrow Node to

9

8.1

8.2 The commutative diagram in Figure 8.8 says that the r1-value of any A-

occurrence is the same as the r2-value of that A-occurrence. So, r2 (or r1) is

superfluous.

9.1 4 input steps, 3 internal steps, 4 external steps, and 5 output steps

10

10.1 Step 2 in the textual SSD is ‘System  External System: Store(x, t, y, r)’.

In case there is no storage of the measurements, Step 2 should be left out.

In case of internal storage of the measurements, Step 2 should be changed into:

‘System  System: Store(x, t, y, r)’.

Similarly for the corresponding step in the graphical SSD, which is

‘System -> “External System”: Store(x, t, y, r)’.

In case there is no storage of the measurements, this step should be left out. In

case of internal storage of the measurements, this step should be changed into:

‘System -> System: Store(x, t, y, r)’.

The resulting graphical SSD in case of internal storage of the measurements:

In case there is no storage of measurements, the resulting graphical SSD is the

one above but without the step ‘Store(x, t, y, r)’ from System to System.

11

Appendix: Plantuml-code used

For Exercise 4.1(b)

@startuml

hide circle

hide members

Member “ *” – “ *” Book : borrows >

Book “*” -- “+” Author: < wrote

Book “*”-- “1 ” Publisher: < published

Book “ *” - “ ?” Branch: is in >

@enduml

For Exercise 4.3(d)

@startuml

hide circle

hide members

class CI as “ Catalogue Item ”

class II as “ Individual Item ”

Client " 1?" - " <u>*</u>" II: buys >

CI " *? " -[#red]- " <u>*</u>" Client: buys <

II " <u>*</u> " - " <u>1</u>" Cashier: scans <

CI " 1" -- "*" II: is described by <

@enduml

For Exercise 5.1(a)

@startuml

hide circle

hide empty members

class “ Book Copy “ {

Book ID

Branch

Book Title

Condition

}

class “ Book Title “ {

ISBN

Title

Author

Publisher

}

Member “ * ” – “ * ” “ Book Copy “ : borrows >

“ Book Title “ “*” -- “1” Author: < wrote

“ Book Title “ “*” -- “ 1” Publisher: < published

“ Book Copy “ “*” -- “1” “ Book Title “: < describes

“ Book Copy “ “ * ” - “ 1 ” Branch: is in >

@enduml

12

For Exercise 5.1(b)

@startuml

hide circle

hide empty members

class “ Book Copy “ {

Book ID

Branch

Book Title

Condition

}

class “ Book Title “ {

ISBN

Title

Author

Publisher

}

Member " 1 " - " *" " Loan ": by <

" Loan " " * " - " 1" “ Book Copy “: of >

“ Book Title “ “*” -- “1” Author: < wrote

“ Book Title “ “*” -- “ 1” Publisher: < published

“ Book Copy “ “*” -- “1” “ Book Title “: < describes

“ Book Copy “ “ * ” - “ 1 ” Branch: is in >

@enduml

For Exercise 5.1(c, d, e)

@startuml

hide circle

hide empty members

class “ Book Copy “ {

! Book ID

^Branch

^Book Title

Condition

}

class “ Book Title “ {

! ISBN

Title

^Author

^Publisher

}

class " Loan " {

^Member

^Book Copy

Borrowing Date

}

Member <-{ " Loan ": by <

" Loan " }-> “ Book Copy ”: of >

“ Book Title “ }--> Author: < wrote

“ Book Title “}--> Publisher: < published

“ Book Copy “ }--> “ Book Title “: < describes

“ Book Copy “ }-> Branch: is in >

@enduml

13

For Exercise 5.1(f, g)

@startuml

hide circle

hide empty members

class “ Book Copy “ {

! Book ID

^Branch

^Book Title

Condition

}

class “ Book Title “ {

! ISBN

Title

^Publisher

}

class " Loan " {

^Member

^Book Copy

Borrowing Date

}

class Contribution {

^Author

^Book Title

}

Member <-{ " Loan ": by <

" Loan " }-> “ Book Copy ”: of >

 “ Book Title “}--> Publisher: > published by

“ Book Copy “ }--> “ Book Title “: > described by

“ Book Copy “ }-> Branch: is in >

Author <-{ Contribution: by <

Contribution }-> “ Book Title ”: to >

@enduml

For Exercise 5.2(a)

hide circle

hide empty members

Employee <|-- Coordinator

Course <-{ Coordinator

class Coordinator {

! ^Employee
 ^Course

}

For Exercise 5.2(b)

hide circle

hide empty members

Employee <--{ Coordinator

Course <-{ Coordinator

class Coordinator {

! ^Employee

! ^Course

}

14

For Exercise 5.2(c)

hide circle

hide empty members

Employee <|-- Coordinator

Course <- Coordinator

class Coordinator {

! ^Employee

% ^Course

}

For Exercise 5.2(d)

hide circle

hide empty members

Employee <--{ Coordinator

Course <- Coordinator

class Coordinator {

 ^Employee

! ^Course

}

For Exercise 5.2(b)

hide circle

hide empty members

Employee <--{ Course

class Course {

^Coordinator

}

For Exercise 5.3(b)

@startuml

hide circle

hide empty members

Class Rating {

^Participation

value

}

Class Participation {

^Student

^Class

}

Class Class {

^Course

^Lecturer

}

Participation <--{ Rating

Student <--{ Participation

Class <--{ Participation

Course <--{ Class

Lecturer <--{ Class

@enduml

15

For Exercise 5.4(a)

@startuml

hide circle

hide empty members

"Individual Item" }-> " Catalogue Item": is described by >

Class "Individual Item" {

! Item ID

^ Catalogue Item

}

Class " Catalogue Item" {

! Catalogue Item ID

}

@enduml

For Exercise 5.4(b)

@startuml

hide circle

hide empty members

Class " Catalogue Item" {

! Catalogue Item ID

. unit of measure

. quantity in store

}

@enduml

For Exercise 5.5

@startuml

hide circle

hide empty members

class Node as " Node " {

! Name

}

class Arrow{

! ^Node from

! ^Node to

! Label

}

Node <--{ Arrow: from

Node <--{ Arrow: to

@enduml

For Exercise 8.1

@startuml

hide circle

hide empty members

class CE as “Course Enrolment”

class EE as “Exam Enrolment”

Course <--{ Exam: for

Course <--{ CE: in

Exam <--{EE: for

CE <--{ EE: within

class X as “<size:36>O " #white ##white

CE <-[#white] X

@enduml

16

For Exercise 10.1

@startuml

“sensor x” -> System: Measurement(x, t, y)

group in any order

System -> System: Store(x, t, y, r)

participant h as “heating h”

participant a as “airco a”

group if [t < Hmin of the type of room where sensor x is in]

group for each [heating h in the room of x in state ‘Off’]

System -> h: ‘On!’

System -> System: Change state of h to ‘On’

end

end

group if [t > Hmax of the type of room where sensor x is in]

group for each [heating h in the room of x in state ‘On’]

System -> h: ‘Off!’

System -> System: Change state of h to ‘Off’

end

end

group if [t < Amin of the type of room where sensor x is in]

group for each [airco a in the room of x in state ‘On’]

System -> a: ‘Off!’

System -> System: Change state of a to ‘Off’

end

end

group if [t > Amax of the type of room where sensor x is in]

group for each [airco a in the room of x in state ‘Off’]

System -> a: ‘On!’

System -> System: Change state of a to ‘On’

end

end

end

@enduml

