PlantUML-code used in the book
Developing Information Systems Accurately:
A Wholistic Approach

[bookmark: _GoBack]Table of contents

Preface	3
2	Developing a Functional Requirement	4
2.3	User Stories	4
2.8.2	Generating Graphical SSDs from Textual SSDs	4
2.9	Overview of Our Approach to Develop a User Wish	9
4	Domain Modelling	10
4.1	Domain Models	10
4.2	Finding/Discovering/Determining Relevant Candidates	11
4.3.1	Many-to-Many Associations	12
4.3.2	Ternary Associations and Beyond	12
4.3.3	Individual Items Versus ‘Catalogue’ Items	13
4.3.4	Directed Graphs	14
4.3.5	Trees and the Like	15
4.3.6	Other Concepts Related to Themselves	16
4.3.7	Generalization and Specialization	17
4.4	Summary	18
5	Conceptual Data Models	19
5.2	From Domain Models to Conceptual Data Models: An Example	19
5.3	From Domain Models to Conceptual Data Models: General Case	22
5.4	Using Arrows for Conceptual Data Models	23
5.6.1	Transforming Many-to-Many Associations	26
5.6.2	Treating Associations in General	26
5.6.3	Individual Items Versus ‘Catalogue’ Items	28
5.6.4	Directed Graphs	29
5.6.5	Trees and the Like	31
5.6.6	Other Concepts Related to Themselves	32
5.6.7	Generalization and Specialization	33
6	Directions for Implementation	34
6.3	Interaction with a (Software) System	34
6.4.1	From Conceptual Data Models to Data Models in SQL	35
6.5	Generating an Initial Class Diagram	37
7	Organizing and Managing the Development Process	38
7.2.1	Waterfall Methods	38
7.2.2	Parallel Development	38
7.2.4	Prototyping	39
7.2.5	Iterative Development and Incremental Development	40
8	A Non-Trivial University Example Worked out	41
8.3	A Simple Domain Model for the Situation	41
8.4	From Domain Model to an Initial Conceptual Data Model	41
8.5	A Refined Conceptual Data Model Including References	42
8.7	Conceptual Data Model with ‘all’ Relevant Properties	44
8.9.1	Informally	46
8.11	Specification in SQL	47
9	Converting a Large Use Case	49
9.3	Converting a Large Textual SSD to a Graphical SSD	49
10	Development Example where Requirements Constantly Change	55
10.4	Variable Thresholds per Room Type	55
10.6	A Corresponding Textual SSD and Graphical SSD	56
10.11	Interactions Between Our System and its Environment	57
10.12	Looking Back: Typical Ingredients of an IS and a Control System	57

Appendix: Our Plantuml Tutorial	58
A.1 	 From Textual SSDs to Graphical SSDs	58
A.2 	Domain Models	58
A.3 	Conceptual Data Models	58
A.4 	Class Diagrams	58
A.5 	System as Interface + Kernel	58
A.6 	Use Case Diagrams	58

On the next pages, each text from ‘@startuml’ up to ‘@enduml’ can be substituted in http://www.plantuml.com/plantuml/uml/SyfFKj2rKt3CoKnELR1Io4ZDoSa70000

[bookmark: _Toc110627961]Preface

[image: PlantUML diagram]
@startuml
hide circle
hide members
allowmixing
Package “\nProblem \n Space\n” <<Cloud>> {
}
database “\nSystem\n\n”
“\nProblem \n Space\n” .> “\nConceptual \nModel\n”: ??
“\nConceptual \nModel\n” -> “\nSystem\n\n”: !!
@enduml

[bookmark: _Toc87450138][bookmark: _Toc94385330][bookmark: _Toc105320186][bookmark: _Toc110627962]2	Developing a Functional Requirement

[bookmark: _Toc105320231][bookmark: _Toc110627963]2.3	User Stories
Figure 2.2
@startuml
left to right direction
: Program secretary	: --> (Create a Course Registration)
: Program director	: --> (Create a Course)
: Program director	: --> (Retrieve the set of my Courses)
: Program director	: --> (Retrieve the Registrations for a Course)
: Program secretary	: --> (Retrieve the Registrations for a Course)
: Program director	: --> (Update a Course name)
: Program director	: --> (Delete a Course)
: Program secretary	: --> (Delete a Course Registration)
: Sysadmin	: --> (Initialize the state)
@enduml

[bookmark: _Toc105320250][bookmark: _Toc110627964]2.8.2	Generating Graphical SSDs from Textual SSDs
[bookmark: _Toc105320251]Table 2.7: Ai Aj: Message (if Ai occurred earlier than Aj)
@startuml
participant Ai
participant "...." #white
participant Aj
Ai -> Aj: Message
@enduml

Table 2.7: Ai Aj: Message (if Ai occurred later than Aj)
@startuml
participant Aj
participant "...." #white
participant Ai
Ai -> Aj: Message
@enduml

Table 2.7: Ai Ai: Message
@startuml
Ai -> Ai: Message
@enduml

Table 2.7: S1; S2
@startuml
participant Ai1
participant Ai2
participant Aj1
note over Ai1, Aj1: //D//(S1)
note over Ai2, Aj2: //D//(S2)
@enduml

Table 2.7: if C then S end
@startuml
participant Ai
participant "...." #white
participant Aj
group if [C]
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: if C then S1 else S2 end
@startuml
participant Ai1
participant Ai2
participant Aj1
group if [C]
note over Ai1, Aj1: //D//(S1)
else else
note over Ai2, Aj2: //D//(S2)
end
@enduml

Table 2.7: if A: C then S end
@startuml
participant Ai
participant "...." #white
participant Aj
group if [A: C]
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: if A: C then S1 else S2 end
@startuml
participant Ai1
participant Ai2
participant Aj1
group if [A: C]
note over Ai1, Aj1: //D//(S1)
else else /* not C */
note over Ai2, Aj2: //D//(S2)
end
@enduml

Table 2.7: while C do S end
@startuml
participant Ai
participant "...." #white
participant Aj
group while [C]
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: repeat S until C
@startuml
participant Ai
participant "...." #white
participant Aj
group repeat
note over Ai, Aj: //D//(S)
rnote over Ai, Aj #white:**until** C
end
@enduml

Table 2.7: while A: C do S end
@startuml
participant Ai
participant "...." #white
participant Aj
group while [A: C]
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: repeat S until A: C
@startuml
participant Ai
participant "...." #white
participant Aj
group repeat
note over Ai, Aj: //D//(S)
rnote over Ai, Aj #white: **until** A: C
end
@enduml

Table 2.7: for each E do S end
@startuml
participant Ai
participant "...." #white
participant Aj
group for each [E]
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: S1, S2
@startuml
participant Ai1
participant Ai2
participant Aj1
group in any order
note over Ai1, Aj1: //D//(S1)
note over Ai2, Aj2: //D//(S2)
end
@enduml

Table 2.7: maybe S end
@startuml
participant Ai
participant "...." #white
participant Aj
group maybe
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: either S1 or S2 end
@startuml
participant Ai1
participant Ai2
participant Aj1
group either
note over Ai1, Aj1: //D//(S1)
else or
note over Ai2, Aj2: //D//(S2)
end
@enduml

Table 2.7: begin S end
@startuml
participant Ai
participant "...." #white
participant Aj
group block
note over Ai, Aj: //D//(S)
end
@enduml

Table 2.7: perform N
@startuml
participant Ai
participant "...." #white
participant Aj
group perform
rnote over Ai, Aj #white: N
end
@enduml

Table 2.7: define N as S end
@startuml
title N \n
participant Ai
participant "...." #white
participant Aj
note over Ai, Aj: //D//(S)
@enduml

Figure 2.3
@startuml
title <size:18> Process a Sale </size> \n\n
Customer -> Customer: arrive at checkout \nwith items to purchase	
Cashier -> System: StartNewSale	
group repeat	
	 Cashier -> System: EnterItem(<item identifier>)
group in any order	
	 System -> System: RecordSaleLine(<item identifier>)	
	 System -> Cashier: description, price, \nand running total	
end
rnote over Cashier #white:**until** cashier is done
end 	
Cashier -> System: EndSale 	
System -> Cashier: total with taxes	
Cashier -> Customer: total	
Cashier -> Customer: request for payment	
Customer -> System: process payment	
System -> System: handle payment	
group in any order
System -> System: log completed sale	
System -> AccSys: sale and payment info	
System -> InvSys: sale and payment info
end	
System -> Cashier: receipt	
Customer -> Customer: leave with receipt and goods
@enduml

Figure 2.4
@startuml
note over User, System: //D//(A)
group if [H2]
note over User, System: //D//(A2)
end 	
group if [H1]
note over User, System: //D//(B2)
else else
group if [H3]
note over User, System: //D//(B3)
else else
note over User, System: //D//(B)
end
end
group either
note over User, System: //D//(C)
else or
note over User, System: //D//(C2)
else or
note over User, System: //D//(C3)
end 	
note over User, System: //D//(D)
group maybe
group in any order
note over User, System: //D//(E1)
note over User, System: //D//(E2)
end
end
@enduml

[bookmark: _Toc110627965]2.9	Overview of Our Approach to Develop a User Wish
Figure 2.7
@startuml
User -> System: <pUW>
group if [student is a foreigner]
	 rnote over User, System #white: …..
else else
group	if [(s)he was not a student before]
	 System -> System: generate new student number
	 System -> System: fulfil <pUW + new student number>
	else else
	 rnote over User, System #white: …..
	end
end
System -> User: result
@enduml

Figure 2.8
@startuml
start
:USER WISH;
:USER STORY;
repeat
repeat
:SCENARIO;
: tSSD ;
:INTEGRATION;
: NL-TEXT \n(and gSSD);
:VALIDATION;
repeat while (OK?) is (NO\n)
->YES\n\n;
: IMPLEMENTATION
(SW PROCEDURES) ;
repeat while (MORE\nSCENARIOS?) is (YES\n)
->NO\n\n;
end
@enduml

[bookmark: _Toc87450140][bookmark: _Toc94385332][bookmark: _Toc105320188][bookmark: _Toc110627966]4	Domain Modelling

[bookmark: _Toc105320266][bookmark: _Toc110627967]4.1	Domain Models
[image: PlantUML diagram]1st figure of Section 4.1
@startuml
hide circle
hide members
class Concept
@enduml

2nd figure of Section 4.1
[image: PlantUML diagram]@startuml
hide circle
hide methods
class Concept{
Property 1
Property 2
⁝
⁝
}
@enduml

[image: PlantUML diagram]3rd figure of Section 4.1
@startuml
hide circle
hide members
" Concept A " "m " - " n" " Concept B ": xxx >
@enduml

4th figure of Section 4.1
Same as 3rd figure of Section 4.1

[bookmark: _Toc105320267][image: PlantUML diagram]5th figure of Section 4.1
@startuml
hide circle
hide members
" Concept A " "m " - " n" " Concept B ": < is xxx-ed by
@enduml

[image: PlantUML diagram]6th figure of Section 4.1
@startuml
hide circle
hide methods
class Student{
Name
Address
Phone nr.
}
class Course{
Name
}
class Exam{
Date
}
Student " * " - " *" Course : enrols for >
Course "1 " - " *" Exam : < belongs to
@enduml

[image: PlantUML diagram]7th figure of Section 4.1
@startuml
hide circle
hide members
" A " "m " - " n" " B ": xs >
@enduml

8th figure of Section 4.1
Same as 7th figure of Section 4.1

9th figure of Section 4.1
Same as 7th figure of Section 4.1

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\JP1DQiCm48NtEiLRfWjVm9IGkjraqL9eBw2VAHegIq4p9eIGkrV-mNGtUk_Jy34dKLjr6fE970YUgq-qpZHUz8QHHaTLZ4zM14CfltTp_Xe-p3Th8rycZQN2t7-OKdXWg3RxY8D6WcimMC3vwHymX-St72QXq2fej0gtV6lOv-G.png]10th figure of Section 4.1
@startuml
hide circle
hide empty members
class Book{
ISBN
Title
Author
{field} Branch (the book is in)
{field} Book ID (used in that branch)
Publisher
Physical Condition
}
Member - Book : borrows >
Book -- Author: < wrote
Book -- Publisher: < published
Book - Branch: is in >
@enduml

[bookmark: _Toc110627968]4.2	Finding/Discovering/Determining Relevant Candidates
[image: PlantUML diagram]1st figure of Section 4.2
@startuml
hide circle
hide members
Student – Exam: enrols for >
Exam – Course: for >
Course – Lecturer: of >
@enduml

[image: PlantUML diagram]2nd figure of Section 4.2
@startuml
hide circle
hide members
Student – Exam: enrols for >
Exam – Course: for >
Course – Lecturer: of >
Student –- Grade: < of
Exam –- Grade: < for
@enduml

[bookmark: _Toc105320269]

[bookmark: _Toc110627969]4.3.1	Many-to-Many Associations
[image: PlantUML diagram]1st figure of Section 4.3.1
@startuml
hide circle
hide members
" A " " * " - " *" " B ": xs >
@enduml

[image: PlantUML diagram]2nd figure of Section 4.3.1
@startuml
hide circle
hide members
" A " " 1 " - " *" " C ": α <
" C " " * " - " 1" " B ": β >
@enduml

[image: PlantUML diagram]3rd figure of Section 4.3.1
@startuml
hide circle
hide members
" Student " " 1 " - " *" " Enrolment ": of <
" Enrolment " " * " - " 1" " Course ": for >
@enduml

[image: PlantUML diagram]4th figure of Section 4.3.1
@startuml
hide circle
hide members
" Member " " 1 " - " *" " Loan ": by <
" Loan " " * " - " 1" " Book ": of >
@enduml

[bookmark: _Toc105320270][bookmark: _Toc110627970]4.3.2	Ternary Associations and Beyond
[image: PlantUML diagram]1st figure of Section 4.3.2
@startuml
hide circle
hide members
Student " 1" -- "*" " Rating ": by <
Lecturer " 1" -- " *" " Rating ": of <
Course " 1" -- "*" " Rating ": in <
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\SoWkIImgAStDuSh8J4bLICuiIiv9XR1pKtEJKekAkP9p4ekB5Vp251AB5Hurp57moy_Dp4lCoQnAJL48IorA0WhEvL9opizBJYqeKJ1GKb1IC5HIqDLLKD9I0cgpKZYtqK311g7249iAGmKRg4LAkWf0gAIWN9wHMPAgeAm (3).png]2nd figure of Section 4.3.2
@startuml
hide circle
hide members
class NV as “ Nominalized Verb ”
"Concept 0" " 1" -- "*" NV: α0 <
"Concept 1" " 1" -- "*" NV: α1 <
class "- - -" #white ##[dotted]white
"- - -" -[dotted]- NV
"Concept n" " 1" -- "\n *" NV: αn <
@enduml

[image: PlantUML diagram]3rd figure of Section 4.3.2
@startuml
hide circle
hide empty members
class " Arrival " {
Arrival time
}
" Ship " " 1" -- "*" " Arrival ": of <
@enduml

[bookmark: _Toc105320271][bookmark: _Toc110627971]4.3.3	Individual Items Versus ‘Catalogue’ Items
[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\TL1BIWGn4DtNAMejzC9j8pBsk9c58kW5kfE2Baodcgeqmo32tC6jNcvEOlg32yai0k-5zqdUpbAhQHe2zEm97QiBj68QndJ2WOQErC25rWmlvsziHDvnB-DfOH-myCCZGgDjT3t2NgBdn1BXyx_jZLEWpNTuRPvXkO27AVMYy39.png]1st figure of Section 4.3.3
@startuml
hide circle
hide empty members
class “ Book Copy “ {
Book ID
Branch
Condition
}
class “ Book Title “ {
ISBN
Title
Author
Publisher
}
Member – “ Book Copy “ : borrows >
“ Book Title “ -- Author: < wrote
“ Book Title “ -- Publisher: < published
 “ Book Copy “ “*” -- “1” “ Book Title “: < describes
 “ Book Copy “- Branch: is in >
@enduml

[image: PlantUML diagram]2nd figure of Section 4.3.3
@startuml
hide circle
hide members
"Individual\n Item" " * " - " 1" " Catalogue\n Item": < describes
@enduml

[image: PlantUML diagram]3rd figure of Section 4.3.3
@startuml
hide circle
hide members
"Individual\n Item" " * " - " 1" " Catalogue\n Item": is described by >
@enduml

[image: PlantUML diagram]4th figure of Section 4.3.3
@startuml
hide circle
hide members
Client " * " - " *" Item: buys >
Item " * " - " 1" Cashier: scans <
@enduml

[bookmark: _Toc105320272][bookmark: _Toc110627972]4.3.4	Directed Graphs
[image: PlantUML diagram]1st figure of Section 4.3.4
@startuml
hide circle
hide members
Node “1” --- “*” Arrow: < from
Node “1” --- “*” Arrow: < to
@enduml

[image: PlantUML diagram]2nd figure of Section 4.3.4
@startuml
hide circle
hide empty members
class " Airport "{
Name
}
class Flight{
Airline
Duration
}
" Airport " “1” --- “*” Flight: < from
" Airport " “1” --- “*” Flight: < to
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\fP51Ii0m44NtESNGfP25Mt5HKLoxy08ndU909XCcqqKfGW-Yb-j99DQAIZTYLl-5_pzyfgyMr2PExfa6X4WQ4-uQkTWCZFo4MbrCeLQugLKY1IF9Yxl36fLA0tUlmfwdP5GIHRBPFSfFVlciwE3ZtKgEM6o7Rd47vy3us_kWKb1.png]3rd figure of Section 4.3.4
@startuml
hide circle
hide empty members
class Association{
Description
From-multiplicity
To-multiplicity
}
class " Concept "{
Concept name
}
class " Property "{
Property name
}
" Concept " “1” --- “*” Association: < from
" Concept " “1” --- “*” Association: < to
" Concept " “1” --- “*” " Property ": < of
@enduml

[bookmark: _Toc105320273]

[bookmark: _Toc110627973]4.3.5	Trees and the Like
[image: PlantUML diagram]1st figure of Section 4.3.5
@startuml
hide circle
hide members
class Root
Root <-- “Folder A"
Root <-- “Folder B"
Root <-- “Folder C"
Root <-- “File 1"
“Folder A" <-- “File 2"
“Folder A" <-- “File 3"
“Folder A" <-- “File 4"
“Folder C" <-- “Folder D"
“Folder C" <-- “File 5"
“Folder D" <-- “File 6"
“Folder D" <-- “File 7"
@enduml

[image: PlantUML diagram]2nd figure of Section 4.3.5
@startuml
hide circle
hide empty members
" Folder " “0..1” ---- “*” " Folder ": ▲ is in
" Folder " “1” -- “*” " File ": is in <
@enduml

[image: PlantUML diagram]3rd figure of Section 4.3.5
@startuml
hide circle
hide empty members
" Node " “0..1” - “*” " Node ": ▲ points to
@enduml

[bookmark: _Toc105320274]

[bookmark: _Toc110627974]4.3.6	Other Concepts Related to Themselves
[image: PlantUML diagram]1st figure of Section 4.3.6
@startuml
hide circle
hide empty members
" Person " “*” ---- “*” " Person ": ▲ once married with
@enduml

[image: PlantUML diagram]2nd figure of Section 4.3.6
@startuml
hide circle
hide empty members
" Product " “*” ---- “*” " Product ": ▲ is direct part of
@enduml

[image: PlantUML diagram]3rd figure of Section 4.3.6
@startuml
hide circle
hide empty members
class " Marriage "{
Wedding Day
}
" Person " "1" - "*" " Marriage ": “ ◄ bride “
" Person " "1" - "*" " Marriage ": “ ◄ groom “
@enduml

[image: PlantUML diagram]4th figure of Section 4.3.6
@startuml
hide circle
hide empty members
class " BOM-entry "{
Quantity Needed
}
" Product " "1" - " * " " BOM-entry ": “ ◄ child “
" Product " "1" - "*" " BOM-entry ": “ ◄ parent “
@enduml

[image: PlantUML diagram]5th figure of Section 4.3.6
@startuml
hide circle
hide empty members
" C " “*” ---- “*” " C "
@enduml

[image: PlantUML diagram]6th figure of Section 4.3.6
@startuml
hide circle
hide empty members
" C " "1" - "*" " HC ": “ ◄ roleB “
" C " "1" - "*" " HC ": “ ◄ roleA “
@enduml

[bookmark: _Toc105320275]

[bookmark: _Toc110627975]4.3.7	Generalization and Specialization
[image: PlantUML diagram]1st figure of Section 4.3.7
@startuml
hide circle
hide empty members
Concept <|-- Subconcept
@enduml

[image: PlantUML diagram]2nd figure of Section 4.3.7
@startuml
hide circle
hide empty members
Concept <|-- Subconcept: “ is_a”
@enduml

[image: PlantUML diagram]3rd figure of Section 4.3.7
@startuml
hide circle
hide empty members
Concept “1 ” <|-- “0..1” Subconcept
@enduml

[image: PlantUML diagram]4th figure of Section 4.3.7
@startuml
hide circle
hide empty members
class " Marriage "{
Wedding Day
}
" Person " <|-- " Woman "
" Person " <|-- " Man "
" Woman " "1" --- "*" " Marriage ": bride <
" Man " "1" --- "*" " Marriage ": groom <
@enduml

[image: PlantUML diagram]5th figure of Section 4.3.7
@startuml
hide circle
hide empty members
class " Marriage "{
Wedding Day
}
" Person " "1" - "*" " Marriage ": “ ◄ partner2 “
" Person " "1" - "*" " Marriage ": “ ◄ partner1 “
@enduml

[bookmark: _Toc105320276]

[bookmark: _Toc110627976]4.4	Summary
[image: PlantUML diagram]1st figure of Section 4.4
@startuml
hide circle
hide members
" Concept A " - " Concept B ": xxx >
@enduml

[image: PlantUML diagram]2nd figure of Section 4.4
@startuml
hide circle
hide methods
class " Concept A " {
Property A1
Property A2
⁝
⁝
}
class " Concept B " {
Property B1
Property B2
⁝
⁝
}
" Concept A " "m " - " n" " Concept B ": xxx >
@enduml

[bookmark: _Toc87450141][bookmark: _Toc94385333][bookmark: _Toc105320189][bookmark: _Toc110627977]5	Conceptual Data Models

[bookmark: _Toc105320279][bookmark: _Toc110627978]5.2	From Domain Models to Conceptual Data Models: An Example
[image: PlantUML diagram]1st figure of Section 5.2
Same as 6th figure of Section 4.1
@startuml
hide circle
hide methods
class Student{
Name
Address
Phone nr.
}
class Course{
Name
}
class Exam{
Date
}
Student " * " - " *" Course : enrols for >
Course "1 " - " *" Exam : < belongs to
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\NSr1QiCm40NG_PpYewMX1M-BAIvjjwMG4oZME3P86j1840YvUqGYx925X3Iy-N_KR5CkmTEoEiQqfidpunquB-AK9czLSSZ5SSmN-hE1wSkvnAhqlqXanFHEr-P-On8VxlB7PjxctrAISblVyDc6pRK66FH0lT_g0JgpH-83CcE.png]2nd figure of Section 5.2
@startuml
hide circle
hide methods
class Student{
Name
Address
Phone nr.
}
class Enrolment{
Date
}
class Course{
Name
}
class Exam{
Date
}
Student " 1 " - " *" Enrolment : of <
Enrolment " * " - " 1" Course : for >
Course "1 " - " *" Exam : < belongs to
@enduml

[image: PlantUML diagram]3rd figure of Section 5.2
@startuml
hide circle
hide members
" A " " * " - " 1" " B ": xs >
@enduml

[image: PlantUML diagram]4th figure of Section 5.2
@startuml
hide circle
hide empty members
class " A "{
^B
}
" A "}->" B ": xs >
@enduml

[image: PlantUML diagram]5th figure of Section 5.2
@startuml
hide circle
hide methods
class Student{
Name
Address
Phone nr.
}
class Enrolment{
^Student
^Course
Date
}
class Course{
Name
}
class Exam{
^Course
Date
}
Student <-{ Enrolment : of <
Enrolment }-> Course : for >
Course <-{ Exam : < belongs to
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\RP3DIiSm4CJl-nJhmUFV1n2HYX_78dWKXJJPsaAIXTqDAANlRaA3lNZAx6PcVh23cXChASAo1aA_Yezqw4IsS53mqQdYcvL0sJQumh6aYGHXT8dW8GGXLNZ7ruKpOPOR_82zfvwpS4mzzzaxcdpa8afLFJcZF_knRTug0y4rDaP.png]6th figure of Section 5.2
@startuml
hide circle
hide methods
class Student{
! Number
Name
Address
[Phone nr.]
}
class Enrolment{
! ^Student
! ^Course
! Date
}
class Course{
! Code
% Name
% Faculty
}
class Exam{
! ^Course
! Date
}
Student <-{ Enrolment : of
Enrolment }-> Course : for
Course <-{ Exam : belongs to
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\RP3DQiCm48Jl-nJRGu_k0vHINFfpD8KSGmAoj8uD-e5T2HACtpqI4l4b9ytkpim7wYKgZibPc1T3g1VMbgfsv4PY0MsL21vYCkJZ2Yyuf79069GZ-3A6IGIE-3y7J-Zv3K-mjTIlvs1TovrRHv7V8R5GLZygqiDUjyMRfI5unSB.png]7th figure of Section 5.2

Same code as for 6th figure of Section 5.2 but with ‘hide methods’ replaced by ‘hide members’

[bookmark: _Toc105320280]

[bookmark: _Toc110627979]5.3	From Domain Models to Conceptual Data Models: General Case
[image: PlantUML diagram]1st figure of Section 5.3
@startuml
hide circle
hide empty members
class " C " as C
class C #header:orange {
^A1
^A2
}
class " A1 " as A1
A1 <--{ C: <its A1>
class " A2 " as A2
A2 <--{ C: <its A2>
class " B1 " as B1 {
^C
}
C <--{ B1: <its C>
class " B2 " as B2 {
^C
}
C <--{ B2: <its C>
@enduml

[image: PlantUML diagram]2nd figure of Section 5.3
@startuml
hide circle
hide empty members
class " C " as C
class C #header:orange {
^A1
^A2
}
class " A1 " as A1
A1 <--{ C
class " A2 " as A2
A2 <--{ C
class " B1 " as B1 {
^C
}
C <--{ B1
class " B2 " as B2 {
^C
}
C <--{ B2
@enduml

3rd figure of Section 5.3
Same as 1st figure of Section 4.3.3

[bookmark: _Toc105320281]

[bookmark: _Toc110627980]5.4	Using Arrows for Conceptual Data Models
[image: PlantUML diagram]1st figure of Section 5.4
@startuml
hide circle
hide members
" A " "m " - " n" " B ": xs >
@enduml

[image: PlantUML diagram]2nd figure of Section 5.4 (m = ‘*’ and n = ‘*’)
@startuml
hide circle
hide empty members
class " C "{
^A
^B
}
" A "<-{" C "
" C "}->" B "
@enduml

[image: PlantUML diagram]3rd figure of Section 5. 4 (m = ‘*’ and n = ‘1’)
@startuml
hide circle
hide empty members
class " B "{
}
class " A "{
^B
}
" A "}->" B "
@enduml

[image: PlantUML diagram]4th figure of Section 5. 4 (m = ‘*’ and n = ‘0..1’)
@startuml
hide circle
hide empty members
class " A "{
[^B]
}
" A "}.>" B "
@enduml

[image: PlantUML diagram]5th figure of Section 5. 4 (m = ‘1’ and n = ‘*’)
@startuml
hide circle
hide empty members
class " B "{
^A
}
" A "<-{" B "
@enduml

[image: PlantUML diagram]6th figure of Section 5. 4 (m = ‘1’ and n = ‘1’)
@startuml
hide circle
hide empty members
class " B "{
!^A
}
class " A "{
!^B
}
" A "->" B "
" A "<-" B "
@enduml

[image: PlantUML diagram]7th figure of Section 5. 4 (m = ‘1’ and n = ‘1’)
@startuml
hide circle
hide empty members
class " A&B "{
<A-properties>
<B-properties>
}
@enduml

8th figure of Section 5. 4 (m = ‘1’ and n = ‘0..1’)
[image: PlantUML diagram]@startuml
hide circle
hide empty members
class " B "{
!^A
}
class " A "{
}
" A "<-" B "
@enduml

[image: PlantUML diagram]9th figure of Section 5. 4 (m = ‘0..1’ and n = ‘*’)
@startuml
hide circle
hide empty members
class " B "{
[^A]
}
" A "<.{" B "
@enduml

[image: PlantUML diagram]10th figure of Section 5. 4 (m = ‘0..1’ and n = ‘1’)
@startuml
hide circle
hide empty members
class " B "{
}
class " A "{
!^B
}
" A "->" B "
@enduml

[image: PlantUML diagram]11th figure of Section 5. 4 (m = ‘0..1’ and n = ‘0..1’)
@startuml
hide circle
hide empty members
class " C "{
! ^A
% ^B
}
" A "<-" C "
" C "->" B "
@enduml

[image: PlantUML diagram]12th figure of Section 5. 4 (also m = ‘0..1’ and n = ‘0..1’)
@startuml
hide circle
hide empty members
class " B "{
}
class " A "{
[!^B]
}
" A ".>" B "
@enduml

[image: PlantUML diagram]13th figure of Section 5. 4 (also m = ‘0..1’ and n = ‘0..1’)
@startuml
hide circle
hide empty members
class " B "{
[!^A]
}
class " A "{
}
" A "<." B "
@enduml

[image: PlantUML diagram]14th figure of Section 5.4
@startuml
hide circle
hide empty members
" C " <--{ " D "
" E " <..{ " F "
" G " <-- " H "
" K " <.. " L "
@enduml

[image: PlantUML diagram]15th figure of Section 5.4
@startuml
hide circle
hide empty members
Class Subconcept {
! ^Concept
}
Concept <|-- "Subconcept"
@enduml

[bookmark: _Toc105320284][bookmark: _Toc110627981]5.6.1	Transforming Many-to-Many Associations
[image: PlantUML diagram]1st figure of Section 5.6.1
@startuml
hide circle
hide members
" A " " * " - " *" " B ": xs >
@enduml

[image: PlantUML diagram]2nd figure of Section 5.6.1
@startuml
hide circle
hide empty members
" A " <-{ " C ": α <
" C " }-> " B ": β >
Class " C " {
^A
^B
}
@enduml

[bookmark: _Toc105320285][bookmark: _Toc110627982]5.6.2	Treating Associations in General
[image: PlantUML diagram]1st figure of Section 5.6.2
@startuml
hide circle
hide members
Student " 1" -- "*" " Rating ": by <
Lecturer " 1" -- " *" " Rating ": of <
Course " 1" -- "*" " Rating ": in <
@enduml

[image: PlantUML diagram]2nd figure of Section 5.6.2
@startuml
hide circle
hide empty members
Class Rating as " Rating " {
^Student
^Lecturer
^Course
value
}
Student <--{ Rating: < by
Lecturer <--{ Rating: < of
Course <--{ Rating: < in
@enduml

[image: PlantUML diagram]3rd figure of Section 5.6.2
@startuml
hide circle
hide members
class NV as “ New concept ”
"Concept 1" " 1" -- "*" NV: β1 <
"Concept 2" " 1" -- "*" NV: β2 <
class "- - -" #white ##[dotted]white
"- - -" -[dotted]- NV
"Concept n" " 1" -- "\n *" NV: βn <
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Artikelen en boeken van derden\LP1F2e905CRtSugFSJqBNSeiXFOksqI1pJnGS4Pn9YGaw21rYGxI8Jf9KsagR_FzUVnulCpvelCdKxEoqWHLTQgcdoRJ-ZCCcIDrZgcwS0xv5eN3wtf3JZrKOnMr7WZ97GCxO3CcyK8dB5qu6zo5yVyYXnHY2E0KpqSCELV9gae.png]4th figure of Section 5.6.2
@startuml
hide circle
hide empty members
class NV as “ New concept ” {
^ Concept 1
^ Concept 2
:
^ Concept n
:
}
"Concept 1" <--{ NV: β1 <
"Concept 2" <--{ NV: β2 <
class "- - -" #white ##[dotted]white
"- - -" -[dotted]- NV
"Concept n" <--{ NV: βn <
@enduml

[image: PlantUML diagram]5th figure of Section 5.6.2
@startuml
hide circle
hide empty members
class " Arrival " {
^Ship
Arrival time
}
" Ship " <--{ " Arrival ": of <
@enduml

[image: PlantUML diagram]6th figure of Section 5.6.2
@startuml
hide circle
hide empty members
Class Rating as " Rating " {
^Student
^Class
value
}
Student <--{ Rating
Class Class as " Class " {
^Course
^Lecturer
}
Class <--{ Rating
Course <--{ Class
Lecturer <--{ Class
@enduml

[bookmark: _Toc105320286][bookmark: _Toc110627983]5.6.3	Individual Items Versus ‘Catalogue’ Items
[image: PlantUML diagram]1st figure of Section 5.6.3
@startuml
hide circle
hide empty members
"Individual Item" }-> " Catalogue Item": is described by >
Class "Individual Item" {
^Catalogue Item
}
@enduml

[bookmark: _Toc105320287]

[bookmark: _Toc110627984]5.6.4	Directed Graphs
[image: PlantUML diagram]1st figure of Section 5.6.4
@startuml
hide circle
hide empty members
" Node " <--{ Arrow: from
" Node " <--{ Arrow: to
class Arrow{
! ^Node from
! ^Node to
:
}
@enduml

[image: PlantUML diagram]2nd figure of Section 5.6.4
@startuml
hide circle
hide empty members
class A as “ A ”
class B as “ B ”
B <--{ A: r1
B <--{ A: r2
@enduml

[image: PlantUML diagram]3rd figure of Section 5.6.4
@startuml
hide circle
hide members
class A
A-->	B:	L1
A-->	B:	L2
A-->	C:	L1
C-->	D:	L1
C-->	A:	L4
C-->	E:	L3
B-->	C:	L1
D-->	F:	L5
E-->	F:	L5
@enduml

[image: PlantUML diagram]4th figure of Section 5.6.4
@startuml
hide circle
hide members
class Announced
Announced	 --> Confirmed
Announced	 --> Open
Announced	 --> Closed
Confirmed	 --> Open
Confirmed	 --> Closed
Open	 --> Suspended
Open	 --> Completed
Suspended	 --> Open
Completed	 --> Checked
Checked	 --> Closed
@enduml

[image: C:\Users\Bert\Google Drive\Onderzoek\Reis en verblijf\RP1FQeKm4CRtESNq05v0kb3QJJSjjDjIYCbOfVbJPY9IfE11thkS9tacAWhFtP3VR_9zJC51KkYi4Ksh4LHBok0oe_qDVs3HLaWib97CyEfd81ccyL8QutlKy15aw7WQhwjI4ld-r86dHhflZ6hwvp7BXaNFmHiDduwJTqyTzcVqZJHI3geZGXTsO.png]5th figure of Section 5.6.4
@startuml
hide circle
hide empty members
class Node as “Allowed Status”
class Arrow as “Allowed Status Change”
Node <--{ Arrow: old \nstatus
Node <--{ Arrow: new \nstatus
Node <--{ Order: current \nstatus
class Node{
! Status
}
class Arrow{
! ^Status before
! ^Status after
}
class Order{
! Order ID
^Status
Remarks
}
@enduml

[bookmark: _Toc105320288]

[bookmark: _Toc110627985]5.6.5	Trees and the Like
[bookmark: _Toc105320289][image: PlantUML diagram]1st figure of Section 5.6.5
@startuml
hide circle
hide empty members
Node <..{ Node: points to
class Node{
 [^Node pointing to]
}
@enduml

[image: PlantUML diagram]2nd figure of Section 5.6.5
@startuml
hide circle
hide empty members
class Node as “Employee”
Node <..{ Node: reports to
class Node{
! Emp-ID
[^Boss]
}
@enduml

[image: PlantUML diagram]3rd figure of Section 5.6.5
@startuml
hide circle
hide members
class E0
E1 -->	E0
E2 -->	E0
E3 -->	E1
E4 -->	E1
E5 -->	E1
E6 -->	E2
E7 -->	E2
@enduml

[image: PlantUML diagram]4th figure of Section 5.6.5
@startuml
hide circle
hide empty members
class Node as “Employee”
Node <..{ Node: reports to
Node <..{ Node: works for
class Node{
! Emp-ID
[^Functional Boss]
[^Project Boss]
}
@enduml

[bookmark: _Toc110627986]5.6.6	Other Concepts Related to Themselves
[image: PlantUML diagram]1st figure of Section 5.6.6
@startuml
hide circle
hide empty members
" Concept " “*” ---- “*” " Concept ": ▲ xxs
@enduml

[image: PlantUML diagram]2nd figure of Section 5.6.6
@startuml
hide circle
hide empty members
Class xx-ment {
^Concept xx-ing
^Concept xx-ed
}
" Concept " "1" - "*" “xx-ment”: " ◄ xx-ing "
" Concept " "1" - "*" “xx-ment”: " ◄ xx-ed "
@enduml

[image: PlantUML diagram]3rd figure of Section 5.6.6
@startuml
hide circle
hide empty members
Class xx-ment {
^Concept xx-ing
^Concept xx-ed
}
" Concept " <-{ “xx-ment”: " ◄ xx-ing "
" Concept " <-{ “xx-ment”: " ◄ xx-ed "
@enduml

[image: PlantUML diagram]4th figure of Section 5.6.6
@startuml
hide circle
hide empty members
" Product " “*” ---- “*” " Product ": ▲ contains
@enduml

[image: PlantUML diagram]5th figure of Section 5.6.6
@startuml
hide circle
hide empty members
Class Containment {
^Product containing
^Product contained
}
" Product " <-{ “Containment”: " ◄ containing "
" Product " <-{ “Containment”: " ◄ contained "
@enduml

6th figure of Section 5.6.6
[image: C:\Users\Bert\Google Drive\Onderzoeksprojecten\P25 - From conceptal level to OO\RP11QyCm38NFyQy8zDp1sjALiaFPTXnZqDsD4cjDGBQ3R9E_lyITOMQwoVxUuptf4Y9mJ9RKC1fi-v5xmljiqNR8GVK48RJlU4Ddpks6HeSFdIUZFe7HnUPvksrUXv5CSsuswXezmmtr34GPVNYsGDempCYBP5z.png]

Note that we can enter a table in Plantuml:

@startuml
hide circle
hide members
class Legend: #line.bold
	Parent
	<--
	Child
	:
	#

	Storage_wall
	<--
	Normal_drawer
	:
	3

	Storage_wall
	<--
	Chest
	:
	1

	Storage_wall
	<--
	Supports
	:
	16

	Storage_wall
	<--
	Cupboard
	:
	2

	Storage_wall
	<--
	Shelf
	:
	8

	Chest
	<--
	Normal_drawer
	:
	4

	Chest
	<--
	Thumb_screw
	:
	16

	Chest
	<--
	Supports
	:
	8

	Chest
	<--
	Surround
	:
	1

	Cupboard
	<--
	Supports
	:
	8

	Cupboard
	<--
	Surround
	:
	1

	Cupboard
	<--
	Thumb_screw
	:
	16

	Cupboard
	<--
	Shelf
	:
	4

	Normal_drawer
	<--
	Bolt_and_nut
	:
	6

	Normal_drawer
	<--
	Drawer_board
	:
	7

	Normal_drawer
	<--
	Thumb_screw
	:
	2

	Supports
	<--
	Thumb_screw
	:
	3

	Supports
	<--
	Support_part
	:
	2

@enduml

[bookmark: _Toc105320290][bookmark: _Toc110627987]5.6.7	Generalization and Specialization
[image: PlantUML diagram]1st figure of Section 5.6.7
@startuml
hide circle
hide empty members
Class Subconcept {
! ^Concept
}
Concept <|-- "Subconcept"
@enduml

[bookmark: _Toc87450142][bookmark: _Toc94385334][bookmark: _Toc105320190][bookmark: _Toc110627988]6	Directions for Implementation

[bookmark: _Toc105320296][bookmark: _Toc110627989]6.3	Interaction with a (Software) System
Figure 6.3
@startuml
User -> System: A	
System -> System: B	
System -> User: C
@enduml

Figure 6.4
@startuml
User -> Interface: A
Interface -> “ Kernel “: A´
“ Kernel “ -> “ Kernel “: B´
“ Kernel “ -> Interface: C´
Interface -> User: C
box "System"
participant Interface
participant “ Kernel “
end box
@enduml

Figure 6.5
@startuml
participant U as “ User ”
box "System"
participant I as “Interface”
participant K as “ Kernel “
end box
U -> I	: A
I -> I	: B
I -> U	: C
@enduml

[bookmark: _Toc105320298]

[bookmark: _Toc110627990]6.4.1	From Conceptual Data Models to Data Models in SQL
Figure 6.6 (a)
@startuml
hide circle
hide empty members
class SE as “Study Enrolment” {
! Student
! Study
}
class Course {
! Course code
% Course name
% Study
}
class CE as “Course Enrolment” {
! ^ Study Enrolment
! ^ Course
}
class Exam {
! ^ Course
! Exam date
}
class EE as “Exam Enrolment” {
! ^ Course Enrolment
! ^ Exam
}
Exam <--{ EE: for
CE <--{ EE: within
Course <--{ Exam: for
Course <--{CE: in
SE <--{ CE: within
@enduml

Figure 6.6 (b)
@startuml
hide circle
hide empty members
class SE as “Study Enrolment” {
! Student
! Study
}
class Course {
! Course code
% Course name
% Study
}
class CE as “Course Enrolment” {
! ^ Student, Study
! ^ Course
}
class Exam {
! ^ Course
! Exam date
}
class EE as “Exam Enrolment” {
! ^ Student, Study, Course
! ^ Course, Exam date
}
Exam <--{ EE: for
CE <--{ EE: within
Course <--{ Exam: for
Course <--{CE: in
SE <--{ CE: within
@enduml

[bookmark: _Toc105320302]

[bookmark: _Toc110627991]6.5	Generating an Initial Class Diagram
Figure 6.7
@startuml
Class A1 as "Concept A"
Class A2 as "Concept B" {
^ Concept A
}
Class A3 as "Concept C" {
[^ Concept B]
}
Class A4 as "Concept D" {
! ^ Concept E
[% ^ Concept C]
}
Class A5 as "Concept E"
Class A6 as "Concept F" {
! ^ Concept E
}
A1 <--{ A2	: many-to-1 <
A2 <.{ A3	: many-to-0/1 <
A4 ..> A3	: 0/1-to-0/1 >
A4 -> A5	: > \n 0/1-to-1
A5 <|-- A6	: sub-concept \n arrow
@enduml

Figure 6.8
@startuml
Class A5 as "Concept E" {
! E-id
PropA
/ PropB
MethA()
MethB(x)
MethC(y,z)
}
Class A6 as "Concept F" {
! ^ Concept E
MethD(u,v,w)
PropC
}
A5 <|-- A6	: sub-concept \n arrow
@enduml

[bookmark: _Toc87450143][bookmark: _Toc94385335][bookmark: _Toc105320191][bookmark: _Toc110627992]7	Organizing and Managing the Development Process

[bookmark: _Toc105320307][bookmark: _Toc110627993]7.2.1	Waterfall Methods
Figure 7.2
@startuml
|Phase 1|
: Analysis ;
|Phase 2|
: Design ;
|Phase 3|
:Implementation;
|Phase 4|
: Verification ;
|Phase 5|
: Maintenance ;
@enduml

[bookmark: _Toc105320308][bookmark: _Toc110627994]7.2.2	Parallel Development
Figure 7.3
@startuml
#99FF99: Analysis ;
: Design ;
:Implementation;
: Verification ;
: Maintenance ;
@enduml

Figure 7.4
@startuml
#99FF99: Analysis ;
: Global Design ;
fork
: Design
 Subproject 1 ;
:Implementation
 Subproject 1 ;
fork again
: Design
 Subproject 2 ;
:Implementation
 Subproject 2 ;
fork again
:.
 ;
:.
 ;
fork again
: Design
 Subproject n ;
:Implementation
 Subproject n ;
endfork
#aqua: Integration ;
: Verification ;
: Maintenance ;
@enduml

[bookmark: _Toc105320310][bookmark: _Toc110627995]7.2.4	Prototyping
Figure 7.5
@startuml
start
repeat
#99FF99: Analysis ;
: Design ;
: Prototype
Implementation;
#99FF99: Prototype
 Evaluation ;
repeat while (users satisfied?) is (no\n)
->yes\n\n;
: Implementation on
operational platform;
: Maintenance ;
@enduml

Figure 7.6
@startuml
start
repeat
#99FF99: Analysis ;
: Design ;
: Prototype
Implementation;
#99FF99: Prototype
 Evaluation ;
repeat while (users satisfied?) is (no\n)
->yes;
#aqua: Redesign for
operational platform;
: Implementation on
operational platform;
: Maintenance ;
@enduml

[bookmark: _Toc105320311]

[bookmark: _Toc110627996]7.2.5	Iterative Development and Incremental Development
Figure 7.7
Three times the following Plantuml-drawing, within a table:
@startuml
#99FF99: Analysis ;
: Design ;
:Implementation;
: Verification ;
: Maintenance ;
@enduml

Figure 7.8
@startuml
start
repeat
#99FF99: Analysis ;
: Design ;
: Prototype Implementation ;
#99FF99: Prototype Evaluation ;
repeat while (satisfying?) is (no)
->yes;
: Implementation on operational platform ;
: Maintenance ;
@enduml

Figure 7.9
Three times the following Plantuml-drawing:
@startuml
start
repeat
#99FF99: Analysis ;
: Design ;
: Prototype
Implementation;
#99FF99: Prototype
 Evaluation ;
repeat while (satisfying?) is (no)
->yes;
: Implementation on
operational platform;
: Maintenance ;
@enduml

[bookmark: _Toc105320193][bookmark: _Toc110627997]8	A Non-Trivial University Example Worked out

[bookmark: _Toc105320321][bookmark: _Toc110627998]8.3	A Simple Domain Model for the Situation
Figure 8.1
@startuml
hide circle
hide empty members
Student "*" -- "*" Study: enrols for >
Student "*" -- "*" Course: enrols for >
Student "*" -- "*" Course: participates in >
Student "*" -- "*" Exam: enrols for >
Student "*" -- "*" Exam: gets graded for >
Student "*" -- "*" Course: rates >
Study "1" -- "*" Course: within <
Course "1" -- "*" Exam: < for
Course "*" -- "*" Course: requires >
@enduml

[bookmark: _Toc105320322][bookmark: _Toc110627999]8.4	From Domain Model to an Initial Conceptual Data Model
Figure 8.2
@startuml
hide circle
hide empty members
class SE as “Study Enrolment”
class CE as “Course Enrolment”
class EE as “Exam Enrolment”
Study <--{ Course: within
Course <--{ Exam: for
Student <--{ SE: of
SE }--> Study: for
Student <--{ CE: of
CE }--> Course: in
Student <--{ Participation: of
Participation }--> Course: in
Student <--{ EE: of
EE }--> Exam: for
Student <--{ Grading: of
Grading }--> Exam: for
Student <--{ Rating: by
Rating }--> Course: of
Course <--{ Requirement: required \ncourse
Course <--{ Requirement: for
@enduml

[bookmark: _Toc105320323]

[bookmark: _Toc110628000]8.5	A Refined Conceptual Data Model Including References
Figure 8.3
@startuml
hide circle
hide members
class SE as "Study Enrolment"
class CE as "Course Enrolment"
class EE as "Exam Enrolment"
class GR as "Grading"
class PA as "Participation"
class RA as "Rating"
RA -> PA: 7b
PA -> CE: 3b
SE <-- CE: 2c
CE <- EE: 5b
EE <- GR: 6b
@enduml

Figure 8.4
@startuml
hide circle
hide empty members
class SE as “Study Enrolment” {
^ Student
^ Study
}
class Course {
^ Study
}
class CE as “Course Enrolment” {
^ Study Enrolment
^ Course
}
class Exam {
^ Course
}
class Participation {
^ Course Enrolment
}
class Rating {
^ Participation
}
class EE as “Exam Enrolment” {
^ Course Enrolment
^ Exam
}
class Grading {
^ Exam Enrolment
}
class Requirement {
^ Requiring course
^ Required course
}
Exam <--{ EE: for
CE <--{ EE: within
EE <--{ Grading: provided
Study <--{ Course: within
Course <--{ Exam: for
Student <--{ SE: of
Study <--{ SE: for
Course <--{CE: in
SE <--{ CE: within
Course <--{ Requirement: required \ncourse
Course <--{ Requirement: for
Participation }-> CE: after
Participation <--{ Rating: after
@enduml

[bookmark: _Toc105320325]

[bookmark: _Toc110628001]8.7	Conceptual Data Model with ‘all’ Relevant Properties
Figure 8.5
@startuml
hide circle
hide empty members

class Faculty {
! Abbreviation
% Full name
Physical address
E-mail address
Phone number
Founding year
}
class Student {
! Student number
Name
Address
[Gender]
Birth date
[Phone number]
U-mail
Registration date
Left?
}
class Study {
! Study code
Level
ECTS-size
^ Faculty
}
class SE as “Study Enrolment” {
! ^ Student
! ^ Study
Enrolment date
}
class Course {
! Course code
% Course name
% ^ Study
Study year
Study block
ECTS-size
Description
^ Faculty
}
class CE as “Course Enrolment” {
! ^ Study Enrolment
! ^ Course
Enrolment date
}
class Exam {
! ^ Course
! Exam date
}
class Participation {
! ^ Course Enrolment
Nr. of Presences
}
class Rating {
! ^ Participation
Value given
}
class EE as “Exam Enrolment” {
! ^ Course Enrolment
! ^ Exam
Enrolment date
}
class Grading {
! ^ Exam Enrolment
Grade
}
class Requirement {
! ^ Requiring course
! ^ Required course
[Explanation]
}
Exam <--{ EE: for
CE <--{ EE: within
EE <-- Grading: provided
Study <--{ Course: within
Course <--{ Exam: for
Student <--{ SE: of
Study <--{ SE: for
Course <--{CE: in
SE <--{ CE: within
Course <--{ Requirement: required \ncourse
Course <--{ Requirement: for
Participation -> CE: after
Participation <-- Rating: after
Faculty <--{ Study: at
Faculty <--{ Course: responsible \nfaculty
@enduml

[bookmark: _Toc110628002]8.9.1	Informally
Figure 8.6
We added the yellow text, in particular ‘class X’ on the right of SE (Study Enrolment), in order to get our circle in the middle of the diagram. We made the background colour and line colour of ‘class X’ white, as well as the new arrow.

@startuml
hide circle
hide empty members
class SE as “Study Enrolment”
class CE as “Course Enrolment”
Study <--{ Course: within
Study <--{ SE: for
Course <--{CE: in
SE <--{ CE: within
class X as “<size:36>O " #white ##white
SE <-[#white] X
@enduml

Figure 8.7
We added the yellow text, in particular ‘class X’ on the right of Study, in order to get our crossed-out circle in the middle of the diagram. We made the background colour and line colour of ‘class X’ white, as well as the new arrow.

@startuml
hide circle
hide empty members
Faculty <-- Course: responsible \nfaculty
Study <--{ Course: within
Faculty <-- Study: at
class X as “<size:36>Ꝋ" #white ##white
Study <-[#white] X
@enduml

Figure 8.8
@startuml
hide circle
hide empty members
class A as “ A ”
class B as “ B ”
B <--{ A: r1\n<size:36>O
B <--{ A: r2\n\n\n
@enduml

[bookmark: _Toc105320331]

[bookmark: _Toc110628003]8.11	Specification in SQL
Figure 8.9
@startuml
hide circle
hide empty members
class Faculty {
! Abbreviation
% Full name
Physical address
E-mail address
Phone number
Founding year
}
class Student {
! Student number
Name
Address
[Gender]
Birth date
[Phone number]
U-mail
Registration date
Left?
}
class Study {
! Study code
Level
ECTS-size
^ Faculty
}
class SE as “Study Enrolment” {
! ^ Student
! ^ Study
Enrolment date
}
class Course {
! Course code
% Course name
% ^ Study
Study year
Study block
ECTS-size
Description
^ Faculty
}
class CE as “Course Enrolment” {
! ^ Student, Study
! ^ Course
Enrolment date
}
class Exam {
! ^ Course
! Exam date
}
class Participation {
! ^ Student, Study, Course
Nr. of Presences
}
class Rating {
! ^ Student, Study, Course
Value given
}
class EE as “Exam Enrolment” {
! ^ Student, Study, Course
! ^ Course, Exam date
Enrolment date
}
class Grading {
! ^ Student, Study, Course
! ^ Course, Exam date
Grade
}
class Requirement {
! ^ Requiring course
! ^ Required course
[Explanation]
}
Exam <--{ EE: for
CE <--{ EE: within
EE <-- Grading: provided
Study <--{ Course: within
Course <--{ Exam: for
Student <--{ SE: of
Study <--{ SE: for
Course <--{CE: in
SE <--{ CE: within
Course <--{ Requirement: required \ncourse
Course <--{ Requirement: for
Participation -> CE: after
Participation <-- Rating: after
Faculty <--{ Study: at
Faculty <--{ Course: responsible \nfaculty
@enduml

[bookmark: _Toc105320194][bookmark: _Toc110628004]9	Converting a Large Use Case
Figure 9.1
@startuml
hide circle
hide members
skinparam classBackgroundColor White
class tSSD as " textual \nSSD "
"Use Case\n<i> Process Sale</i> " -> tSSD: §9.1
tSSD -> " graphical \nSSD ": §9.3
tSSD --> " Natural \n Language " : §9.2
@enduml

[bookmark: _Toc53184036][bookmark: _Toc53184113][bookmark: _Toc105320335][bookmark: _Toc110628005][bookmark: _Toc110612185]9.3	Converting a Large Textual SSD to a Graphical SSD

ProcessSale
@startuml
title ProcessSale \n	
Customer -> Customer: arrive at checkout \nwith items to purchase	
Cashier -> System: StartNewSale	
System -> System: CreateSale	
group repeat
	 group perform
	 rnote over Cashier, System #white: EnterItem	
	 end
group in any order
System -> System: RecordSaleLineItem	
	 System -> Cashier: description, price, \nand running total	
end
rnote over Cashier #white: **until** cashier indicates done	
end
Cashier -> System: EndSale	
System -> Cashier: total with taxes	
Cashier -> Customer: total	
Cashier -> Customer: request for payment	
group maybe
group perform
rnote over Cashier, System #white: HandleDiscount
end
end	
group in any order
group maybe
group perform
rnote over Cashier, System #white: HandleCredit
end
end	
group maybe
group perform
rnote over Cashier, System #white: HandleCoupons
end 	
end
end
group perform
rnote over Customer, AutSys #white: HandlePayment 	
end
group in any order
System -> System: log completed sale	
System -> AccSys: sale and payment infoc	
System -> InvSys: sale and payment info	
end
group maybe
group perform
rnote over Cashier, System #white: HandleGiftReceipt
end
end	
group if [system detects printer is out of paper]	
group perform
rnote over Cashier, System #white: HandlePaperShortage
end
	end	
System -> Cashier: receipt	
Customer -> Customer: leave with receipt and goods	
@enduml

EnterItem
@startuml
title EnterItem \n
group either
group perform
rnote over Cashier, System #white: HandleCodedItem(item-ID [; q]) 	
end
else or	
Cashier -> System: enterPricedItem(P-category▼; price)	
else or	
Cashier -> System: enterWeightItem(W-category▼; weight)	
end
@enduml

HandleCodedItem
@startuml
participant Cas as “Cashier”
participant Sys as “System”
[bookmark: handleCodedItem]title HandleCodedItem(item-ID [; q]) \n
Cas -> Sys: enterCodedItem(item-ID [; q]) 	
group if Sys: quantity parameter q is absent 	
	Sys -> Sys: make q equal to 1
end 	
Sys -> Sys: determine item i having that item-ID	
group if [Sys: item-ID is unknown]	
		Sys -> Cas: “Unknown item ID”
	group if [Cas: there is a human-readable item-ID]	
	Cas -> Sys: enterManually(item-ID; q)	
	else else
group if [Cas: there is a price on the tag]	
			Cas -> Sys: enterPrice(price; q) 	
			Cas -> Sys: applyStandardTaxation
		 else else /* after finally finding out the correct item-ID or price */
			 group either	
Cas -> Sys: enterManually(item-ID; q)	
			 else or	
Cas -> Sys: enterPrice(price; q) 	
			Cas -> Sys: applyStandardTaxation	
			 end
		end
	end
end
@enduml

HandleDiscount
@startuml	
[bookmark: handleDiscount2]title HandleDiscount \n	
Cashier -> System: applyDiscount(Customer ID) 	
[bookmark: _Hlk517127290]System -> System: apply discount to sale 	
System -> Cashier: new total with taxes	
@enduml

HandleCredit
@startuml	
[bookmark: handleCredit2]title HandleCredit \n	
Cashier -> System: applyCredit(Customer ID) 	
System -> System: apply credit to sale up to price = 0 	
System -> System: reduce remaining credit 	
System -> Cashier: new total with taxes	
@enduml

HandleCoupons
@startuml 	
[bookmark: handleCoupons2]title HandleCoupons \n	
group repeat
 Cashier -> System: record coupon 	
 System -> System: reduce price with value of coupon 	
 System -> System: record usage of coupon 	
 System -> Cashier: new total with taxes	
rnote over Cashier #white: **until** coupons are done	
end
@enduml

HandlePayment
@startuml	
[bookmark: handlePayment2]title HandlePayment \n	
participant Customer	
participant Cashier	
participant System	
group either
group perform
rnote over Customer, System #white: HandleCashPayment	
end
else or
group perform
rnote over Customer, AutSys #white: HandleCreditPayment	
end
else or
group perform
rnote over Customer, System #white: HandleCheckPayment	
end
else or
group perform
rnote over Customer, System #white: HandleDebitPayment	
end
end	
@enduml

HandleCashPayment
@startuml 	
[bookmark: handleCashPayment2]title HandleCashPayment \n	
Cashier -> System: Enter(cash amount tendered) 	
System -> Cashier: balance due 	
System -> System: release cash drawer 	
Cashier -> System: deposit cash amount tendered	
Cashier -> Customer: cash balance	
System -> System: record cash payment	
@enduml

HandleCreditPayment
@startuml 	
[bookmark: handleCreditPayment2]title HandleCreditPayment \n	
Customer -> System: MakeCreditPay(credit account info)	
System -> Cashier: payment info (for verification)	
Cashier -> System: confirm	
System -> AutSys: payment approved?	
AutSys -> System: payment approval	
group in any order
System -> Cashier: payment approved	
System -> System: record credit payment	
end
rnote over System, Cashier #white: **. . .** \n**. . .** \n**. . .**
@enduml

HandleGiftReceipt
@startuml	
[bookmark: handleGiftReceipt2]title HandleGiftReceipt \n	
Cashier -> System: giveGiftReceipt	
System -> Cashier: gift receipt	
@enduml

HandlePaperShortage
@startuml	
[bookmark: handlePaperShortage2]title HandlePaperShortage \n	
System -> Cashier: “Out of paper”	
Cashier -> Cashier: replace paper	
Cashier -> System: printReceipt	
@enduml

HandleManagerOverride
@startuml	
[bookmark: handleManagerOverride2]title HandleManagerOverride \n	
Manager -> System: changeModeTo(‘Manager’) 	
System -> System: change to mode ‘Manager’ 	
Manager -> System: <do some ManagerMode operation>	
System -> System: change to mode ‘Cashier’	
@enduml

HandleTaxExempt
@startuml	
[bookmark: handleTaxExempt2]title HandleTaxExempt \n	
Cashier -> System: enterStatusCode(‘tax-exempt’)	
System -> System: record Status Code ‘tax-exempt’	
@enduml

HandleItemRemoval
@startuml	
[bookmark: HandleItemRemoval2][bookmark: _Hlk517647556]title HandleItemRemoval \n	
Customer -> Cashier: request to remove item	
group if [value of item ≤ cashier-limit]	
		Cashier -> System: remove item	
	else else	
		Manager -> System: remove item	
end 	
System -> System: delete item 	
System -> Cashier: new (running) total	
@enduml

HandleSaleCancellation
@startuml 	
[bookmark: handleSaleCancelation2]title HandleSaleCancellation \n	
Cashier -> System: cancel sale	
System -> System: delete sale 	
System -> Cashier: “Done”	
@enduml

HandleSaleSuspension
@startuml	
[bookmark: handleSaleSuspension2]title HandleSaleSuspension \n	
Cashier -> System: suspendSale	
System -> System: record suspended sale	
System -> Cashier: suspend receipt	
@enduml

[bookmark: _Toc105320195][bookmark: _Toc110628006][bookmark: _Toc53184037][bookmark: _Toc53184114]10	Development Example where Requirements Constantly Change

[bookmark: _Toc105320340][bookmark: _Toc110628007]10.4	Variable Thresholds per Room Type
Figure 10.1
@startuml
hide circle
hide methods
package “Overview of configuration structure” {
“Room Type” <--{ Room
Room <--{ Sensor
Room <--{ Heating
Room <--{ Airco
}
class “Room Type” {
! RTID
Hmin
Hmax
Amin
Amax
}
class Room {
! RID
^ Room Type
}
class Sensor {
! SID
^ Room
}
class Heating {
! HID
^ Room
State
}
class Airco{
! AID
^ Room
State
}
@enduml

[bookmark: _Toc105320342]

[bookmark: _Toc110628008]10.6	A Corresponding Textual SSD and Graphical SSD
Figure 10.2
@startuml
“sensor x” -> System: Measurement(x, t, y)
group in any order
System -> “External System”: Store(x, t, y, r)
participant h as “heating h”
participant a as “airco a”
group if [t < Hmin of the type of room where sensor x is in]
group for each [heating h in the room of x in state ‘Off’]
System -> h: ‘On!’
System -> System: Change state of h to ‘On’
end
end
group if [t > Hmax of the type of room where sensor x is in]
group for each [heating h in the room of x in state ‘On’]
System -> h: ‘Off!’
System -> System: Change state of h to ‘Off’
end
end
group if [t < Amin of the type of room where sensor x is in]
group for each [airco a in the room of x in state ‘On’]
System -> a: ‘Off!’
System -> System: Change state of a to ‘Off’
end
end
group if [t > Amax of the type of room where sensor x is in]
group for each [airco a in the room of x in state ‘Off’]
System -> a: ‘On!’
System -> System: Change state of a to ‘On’
end
end
end
@enduml

[bookmark: _Toc105320347]

[bookmark: _Toc110628009]10.11	Interactions Between Our System and its Environment
Figure 10.3
@startuml
participant Thresholder
participant “sensor x”
participant “**System**” #red	
“**System**” -> “sensor x”: SendTemperature
“sensor x” -> “**System**”: Measurement(x, t, y)
“**System**” -> “Data Store”: Store(x, t, y, r)
“**System**” -> “heating h”: ‘On!’ / ‘Off!’
“heating h” -> “**System**”: Status(h)
“**System**” -> “airco a”: ‘On!’ / ‘Off!’
“airco a” -> “**System**”: Status(a)
Thresholder -> “**System**”: UpdateThresholds(r, h1, h2, a1, a2)
@enduml

[bookmark: _Toc105320348][bookmark: _Toc110628010][bookmark: _Toc110612198]10.12	Looking Back: Typical Ingredients of an IS and a Control System
Figure 10.4
@startuml
Actor -> System: CRUD-request
System -> System: CRUD-operation
System -> Actor: Result
…
@enduml

Figure 10.5
@startuml
“Sensor x” -> System: Measurement
System -> “Actuator y”: Command
…
“Actuator y” -> System: Feedback
@enduml

[bookmark: _Toc53184038][bookmark: _Toc53184115][bookmark: _Toc105320196][bookmark: _Toc110628011]Appendix: Our Plantuml Tutorial
[bookmark: _Toc105320350]All Plantuml-code can be found in the Appendix itself

[bookmark: _Toc110628012]A.1 		From Textual SSDs to Graphical SSDs
Contains two Plantuml-drawings

[bookmark: _Toc105320351][bookmark: _Toc110628013]A.2 	Domain Models
Contains three Plantuml-drawings

[bookmark: _Toc105320352][bookmark: _Toc110628014]A.3 	Conceptual Data Models
Contains four Plantuml-drawings

[bookmark: _Toc105320353][bookmark: _Toc110628015]A.4 	Class Diagrams
Contains one Plantuml-drawing

[bookmark: _Toc105320354][bookmark: _Toc110628016]A.5 	System as Interface + Kernel
Contains two Plantuml-drawings

[bookmark: _Toc105320355][bookmark: _Toc110628017]A.6 	Use Case Diagrams
Contains one Plantuml-drawing

image2.png
Concept

image3.png
Concept
Property 1

Property 2

image4.png
= xxx
Concept A Concept B

image5.png
<is xxx-ed by
Concept A Concept B

image6.png
Student

= enrols for_[Course| <belongsto [Exam
B * [Name [1 * | Date

i

image7.png

image8.png
W Author

>

ISBN
Title

Branch (the book is in)

Book ID (used in that branch)
Publisher
Physical Condition

b published

Publisher

image9.png
| »enrols for | =for | »of

Student} {exam} {course}

{Lecturer]

image10.png
| »enrols for | =for | »of

Student} {Exam} {course}

{Lecturer]

»of « for

[Grade!

image11.png

image12.png

image13.png
“of > for
Student |~ Enrolment || Course |

image14.png
f
member |-+ oan - L Book |

image15.png
Student Lecturer] Course

Rating

image16.png
Concepto| [concept1] --- [conceptn|

yao \bal v an

| Nominalized verb

image17.png
I of

Arrival
Arrival time

image18.png
[Book copy |

wisin_

| borrows
Member}

Book ID
Branch

Branch
Condition

l describes
1

Book Title

ISBN
Title
Author
Publisher

b published

image19.png
individual| < describes [catalogue
Item * 1 Item

image20.png
individual|_™is described by | catalogue;
item | * 1| Item

image21.png
= buys < scans
[ctient > fitem{——"{cashier|

image22.png
[Node|

Arrow|

image23.png
Airport

Airline
Duration

image24.png
Concept
Concept name

Association
Property

Description
From-multiplicity
To-multiplicity

Property name

image25.png
Root.

Folder A| [Folder B| [Folder c| [File]
[File2| [Files| [Filea] [Foider D]~ [File s|

File 6 File 7

image26.png
0.1
Folder [+ D Aisin

s in

image27.png
0.1

Node [~ 4 points to

image28.png
Person [——> A once married with

image29.png
Product [~ as direct part of

image30.png
<groom _« | Marriage

Person
<bride _*] wedding Day

image31.png
<parent BOM-entry
< child Quantity Needed

Product.

image32.png

image33.png
L <roleA *
b =t

image34.png
Concept|

i

Subconcept

image35.png
Concept|

i

Subconcept

image36.png
Concept|

0.1

i

Subconcept

image37.png
Person

i

Marriage
Wedding Day

image38.png
<partnerl 4| Marriage
Person
<partner2__* | Wedding Day

image39.png
= xxx
Concept A Concept B

image40.png
Concept A Concept B

Property A1| »xxx | Property B1
Property A2 [mn | Property B2

image41.png
Student

Name <of [Enrolment| mfor [Course| belongsto [Exam|

Address [1 *[pate [* 1[Name |l * | Date |
Phone nr.

image42.png

image43.png

image44.png
Student

Name
Address
Phone nr.

Enrolment| [Exam |
Exam
“of J ~student b= Tr Cﬂursﬂ}(<bs\ungs to

~Course
~Course Name

Date Date

image45.png
Student

1 Number

Name
Address
[Phone nr. |

Enrolment

Course
T ~student _f L[Code belongs to
1 ~Course % Name
1 Date % Faculty

Exam

1 ~Course

| Date

image46.png
of for belongs to
[student << Enrolment p——>{ Course 2" < Exam|

image47.png

image48.png

image49.png
55
[22]]

image50.png

image51.png

image52.png

image53.png

image54.png
<A-properties>
<B-properties>

image55.png

image56.png

image57.png

image58.png
VY

image59.png

image60.png

image61.png

image62.png
Concept|

Subconcept
1 ~Concept

image63.png
55
[22]]

image64.png
{
i

Student Lecturer

Course

~Student
~Lecturer
~Course

value

image65.png
Concept1| [conceptz] --- [conceptn|

1 1

wB1 \bp2 v Bn

New concept |

image66.png
Concept 1| [concept 2 - Concept n

»R1 » B2 < pn

New concept

~ Concept 1
~ Concept 2

~ Concept n

image67.png
Arrival

~ship
Arrival time

image68.png
{

Course

Lecturer

~Course
~Lecturer

~Student
~Class
value

image69.png
individual ltem | wis described by
Catalogue Item
~Catalogue Item

image70.png
1 ~Node from
1 ~Node to

image71.png

image72.png

image73.png
|

Announced

Confirmed

suspended| [Completed

|

image74.png
Allowed Status
1 Status

current
status

Allowed Status Change

1 ~Status before
| ~Status after

1 Order ID
~Status
Remarks

image75.png
Node -
= points to
~Node pointing to]

image76.png
Employee
I Emp-ID ' reports to
[~Boss]

image77.png

image78.png
Employee

reports £0> works for

1 Emp-1D
[~Functional Boss]
[~Project Boss |

image79.png
Axxs

Concept

image80.png
xx-ment

1 wxxing +
[concept =2 * L eptxxeing
<xx-ed
~Concept xx-ed

1

image81.png
xx-ment

< xxing

Concept & aced 5 [Conceptucing
~Concept xx-ed

image1.png
Conceptual
Model

image82.png
Product [——> A contains

image83.png
Containment

< containing

<
<contained)

Product ' ~Product containing |

~Product contained

image84.png
Storage_wall

Normal_drawer

Drawer_board| [Bolt_and_nut| [Thumb_screw|

!

Support_part

